
Основная идея
Новое комбинированное лечение ВИЧ-инфекции может усилить иммунный ответ пациента против вируса даже после прекращения приема традиционных лекарств.
Люди с ВИЧ принимают комбинацию лекарств от ВИЧ, чтобы уменьшить количество вируса в организме. При приеме по назначению врача эти препараты, которые в совокупности называются антиретровирусной терапией, могут снизить количество вируса в организме до необнаруживаемого уровня. Антиретровирусную терапию необходимо принимать ежедневно, чтобы снизить вероятность мутации вируса и его устойчивости к препаратам.
Хотя снижение количества вируса в организме до необнаруживаемого уровня означает, что он больше не может передаваться, однако самые эффективные препараты антиретровирусной терапии не могут полностью уничтожить вирус. Это происходит потому, что ВИЧ прячется в иммунопривилегированных областях организма, таких как определенные участки лимфоидной ткани, которые менее доступны для иммунной системы, чтобы защитить их от повреждения. Киллерные Т-клетки, которые ищут и уничтожают инфицированные клетки, не в состоянии патрулировать эти вирусные резервуары, в которых укрывается ВИЧ.
Постоянное воздействие вируса может привести Т-клетки-киллеры в состояние истощения, при котором они работают не так хорошо. Истощенные киллерные Т-клетки демонстрируют большее количество белка PD-1, который функционирует как "выключатель" их киллерной активности.
Один из способов обратить вспять истощение клеток-киллеров Т - заблокировать переключатель PD-1, но это не усиливает ответ иммунной системы на вирус. И наоборот, вакцина против ВИЧ может значительно усилить иммунитет против вируса.
Поэтому мы проверили, может ли сочетание этих двух тактик повысить эффективность борьбы с ВИЧ-инфекцией. Ученые ввели вакцину от SIV, близкого родственника ВИЧ, вместе с препаратом, блокирующим PD-1, инфицированным SIV макакам-резусам, получающим антиретровирусную терапию.
Они обнаружили, что такой подход вызвал устойчивый антивирусный ответ во многих частях тела, включая иммунопривилегированные участки в лимфатических узлах, и позволил киллерным Т-клеткам проникнуть в вирусные резервуары и очистить их. Самое главное, что обезьяны сохранили сильный иммунитет против вируса даже после прекращения антиретровирусной терапии и значительно повысили свою выживаемость. Ни у одной из семи обезьян в группе комбинированного лечения не развился СПИД в течение шестимесячного периода наблюдения, по сравнению с половиной обезьян, получавших только вакцину или только антиретровирусную терапию.
Почему это важно
В 2020 году около 38 миллионов человек в мире будут жить с ВИЧ. Если ВИЧ не лечить, он может разрушить иммунную систему и сделать организм уязвимым для обычно безвредных инфекций.
Существует проблема доступности лечения, которое необходимо усердно принимать каждый день в течение всей жизни. По оценкам исследования 2015 года, стоимость пожизненной антиретровирусной терапии для человека, заразившегося ВИЧ в возрасте 35 лет, составляет 358 380 долларов США. При этом многие люди не имеют доступа к ежедневной антиретровирусной терапии. Около трех четвертей взрослых людей с ВИЧ в странах Африки к югу от Сахары не достигают стойкой вирусной супрессии из-за отсутствия доступа к лечению.
Наконец, несмотря на то, что антиретровирусная терапия может полностью подавить ВИЧ-инфекцию, она не излечивает ее. Всегда существует риск, что вирус может мутировать и стать устойчивым к существующим препаратам.
Что еще неизвестно
Полное уничтожение ВИЧ из организма - это один из способов устранить необходимость в ежедневной антиретровирусной терапии. Но более достижимая стратегия заключается в том, чтобы поставить под контроль инфицированные клетки.
В настоящее время только 0,5% ВИЧ-положительных людей считаются "элитными контролерами", способными подавлять инфекцию без лекарств.
Хотя исследование показало потенциальный путь борьбы с ВИЧ, он все еще находится в стадии разработки и не готов к применению у пациентов. Необходимы дополнительные исследования, чтобы понять, как формируются вирусные резервуары и почему определенные клетки по-разному реагируют на различные иммунотерапии.
Что дальше
Одна форма терапии может не привести к полной ремиссии ВИЧ. В настоящее время команда ученых тестирует другие комбинации препаратов, чтобы полностью раскрыть потенциал иммунной системы и преодолеть барьеры на пути к излечению.

Многие биологи считают, что есть, такие типы вирусов: бактериофаги или вирусы, заражающие бактерии. Когда ДНК этих вирусов попадает в клетку, она может содержать инструкции, позволяющие клетке выполнять новые трюки.
Могучая сила бактериальных вирусов
Бактериофаги, или сокращенно фаги, держат под контролем популяции бактерий как на суше, так и в море. Ежедневно они убивают до 40% бактерий в океанах, помогая контролировать цветение бактерий и перераспределение органических веществ.
Их способность избирательно убивать бактерии также радует врачей. Природные и сконструированные фаги успешно используются для лечения бактериальных инфекций, которые не поддаются антибиотикам. Этот процесс, известный как фаговая терапия, может помочь в борьбе с устойчивостью к антибиотикам.
Последние исследования указывают на еще одну важную функцию фагов: они могут быть самыми лучшими генетическими мастерами природы, создающими новые гены, которые клетки могут перестраивать для получения новых функций.
Фаги являются самой распространенной формой жизни на планете: в любой момент в мире насчитывается не один миллион - это единица с 31 нулем после нее. Как и все вирусы, фаги имеют высокую скорость репликации и мутации, то есть при каждом размножении они образуют множество вариантов с различными характеристиками.
Большинство фагов имеют жесткую оболочку, называемую капсидом, которая заполнена их генетическим материалом. Во многих случаях оболочка имеет больше места, чем требуется фагу для хранения ДНК, необходимой для его репликации. Это означает, что у фагов есть место для хранения дополнительного генетического багажа: генов, которые на самом деле не нужны для выживания фага и которые он может изменять по своему усмотрению.
Как бактерии перенастроили вирусный переключатель?
Чтобы понять, как это происходит, давайте более подробно рассмотрим жизненный цикл фага.
Фаги бывают двух основных видов: умеренные и вирулентные. Вирулентные фаги, как и многие другие вирусы, действуют по программе "вторжение-репликация-убийство". Они проникают в клетку, захватывают ее компоненты, создают свои копии и вырываются наружу.
Фаги умеренного типа, с другой стороны, играют в долгую игру. Они соединяют свою ДНК с ДНК клетки и могут лежать в спящем состоянии годами, пока что-то не вызовет их активацию. Тогда они возвращаются к вирулентному поведению: реплицируются и вырываются наружу.
Многие умеренные фаги используют повреждение ДНК в качестве пускового механизма. Это своего рода сигнал "Хьюстон, у нас проблема". Если ДНК клетки повреждается, это означает, что ДНК фага-резидента, скорее всего, будет повреждена следующей, поэтому фаг мудро решает перепрыгнуть на другой корабль. Гены, которые направляют фаг на репликацию и вырываются наружу, выключены, если не обнаружено повреждение ДНК.
Бактерии перенастроили механизмы, контролирующие этот жизненный цикл, чтобы создать сложную генетическую систему, которую ученые изучают уже более двух десятилетий.
Бактериальные клетки также заинтересованы в том, чтобы знать, не повреждается ли их ДНК. Если это так, они активируют набор генов, которые пытаются восстановить ДНК. Эта реакция известна как бактериальная реакция SOS, потому что если она не сработает, клетка погибнет. Бактерии организуют SOS-ответ с помощью белка, похожего на переключатель, который реагирует на повреждения ДНК: Он включается, если есть повреждение, и выключается, если его нет.
Возможно, что бактериальные и фаговые переключатели эволюционно родственны. В связи с этим возникает вопрос: Кто изобрел переключатель, бактерии или вирусы?
Предыдущие исследования и работы других исследователей показывают, что фаги сделали это первыми. В нашем недавнем докладе мы обнаружили, что SOS-реакция бактерий Bacteroidetes, группы бактерий, составляющих до половины бактерий, живущих в вашем кишечнике, находится под контролем фагового переключателя, который был перенастроен для реализации собственных сложных генетических программ бактерий. Это позволяет предположить, что бактериальные SOS-переключатели на самом деле являются фаговыми переключателями, которые были перенастроены много веков назад.
Не только бактериальные переключатели оказываются изобретениями фага. Прекрасная детективная работа показала, что бактериальный ген, необходимый для деления клеток, также возник в результате "одомашнивания" гена токсина фага. А многие системы бактериальной атаки, такие как токсины и генетическое оружие, используемое для их введения в клетки, а также камуфляж, который они используют для уклонения от иммунной системы, известны или подозреваются в фаговом происхождении.
Положительные стороны вирусов.
Хорошо, подумаете вы, фаги - это здорово, но вирусы, которые нас заражают - это, конечно, не круто. Тем не менее, появляется все больше доказательств того, что вирусы, заражающие растения и животных, также являются основным источником генетических инноваций в этих организмах. Например, было показано, что одомашненные вирусные гены играют ключевую роль в эволюции плаценты млекопитающих и в поддержании влажности кожи человека.
Последние данные свидетельствуют о том, что даже ядро клетки, в котором находится ДНК, также могло быть вирусным изобретением. Исследователи также предположили, что предки современных вирусов могли быть пионерами в использовании ДНК в качестве первичной молекулы для жизни. Не такой уж маленький подвиг.
Поэтому, хотя вы привыкли считать вирусы квинтэссенцией злодея, они, возможно, являются мощным двигателем генетических инноваций в природе. Люди существуют сегодня, скорее всего, благодаря им.

Этот прорыв в медицине обычно приписывают одному человеку, Фредерику Бантингу, который искал лекарство от диабета. Но создание надежного средства для лечения диабета зависело от исследований двух других ученых, Оскара Минковского и Сёрена Сёренсена, которые ранее проводили исследования на, казалось бы, несвязанные темы.
История инсулина иллюстрирует тот факт, что медицинские инновации строятся на фундаменте науки, а затем требуются квалифицированные инженеры, чтобы вывести лечение из лаборатории и доставить его людям, которые в нем нуждаются.

Эта идея, в некотором роде, заложена в правилах легкой атлетики. В соревнованиях с несколькими забегами - от студенческого уровня до Олимпийских игр - люди, показавшие более высокое время в ранних забегах, назначаются на средние дорожки в последующих забегах. Другими словами, самые быстрые бегуны получают вознаграждение в виде, как предполагается, лучших дорожек.
Моя недолгая беговая карьера давно позади, но в своей профессиональной деятельности я много думаю об использовании статистики для извлечения смысла из данных. В преддверии Олимпийских игр я решил проверить достоверность фольклора о распределении дорожек, оставшегося со времен моей спринтерской карьеры.
Используя данные Международной ассоциации легкоатлетических федераций за 20 лет, я обнаружил, что давние убеждения о преимуществе дорожки не подтверждаются данными. И на самом деле, в спринте на 200 метров данные свидетельствуют о том, что дорожки, которые часто воспринимаются как наименее желательные, на самом деле являются самыми быстрыми.

Первым шагом в создании модели затонувшего корабля было обучение компьютера тому, как выглядит затонувший корабль. Также важно было научить компьютер отличать затонувшие корабли от рельефа морского дна. Для этого понадобилось множество примеров кораблекрушений. Также нужно было научить модель тому, как выглядит естественное дно океана.
Удобно, что Национальное управление океанических и атмосферных исследований ведет общедоступную базу данных о затонувших кораблях. У нее также есть большая общедоступная база данных различных видов изображений, собранных по всему миру, включая сонарные и лидарные снимки морского дна.
Техническая поддержка проекта ВсеТут