Операция выполнена!
Закрыть

Учёные из Калифорнийского университета в Сан-Диего разработали метод, позволяющий точно моделировать свойства хиральных гелимагнетиков — материалов, в которых спины атомов образуют спиральные структуры. Работа решает проблему, остававшуюся нерешённой более 40 лет, и открывает путь к созданию устройств спинтроники следующего поколения.

Хиральные гелимагнетики, известные своими закрученными в спираль спиновыми конфигурациями, привлекают внимание учёных из-за потенциала для разработки энергонезависимой памяти и высокочувствительных сенсоров. Однако их моделирование было крайне сложным из-за масштаба систем: период спирали в слоистых соединениях достигает 48 нанометров и требует учёта миллионов электронных взаимодействий.

Иллюстрация: нейросеть DALL-E

Команда под руководством Кесона Яна, профессора кафедры химической и наноинженерии, предложила подход, основанный на квантовомеханических расчётах из первых принципов. Вместо моделирования всей системы учёные анализировали, как поворот спинов между атомными слоями влияет на общую энергию. «Мы сфокусировались на ключевом аспекте — связи между спиновой конфигурацией и энергией системы, — объяснил Юнь Чэнь, первый автор исследования. — Это позволило использовать компактные суперъячейки и получить результаты с атомарной точностью».

Метод проверили на хиральных магнетиках на основе хрома. Расчёты предсказали три критических параметра: волновой вектор спирали (степень её закрученности), период полного витка (до 48 нм) и критическое магнитное поле, необходимое для изменения структуры. Последний показатель особенно важен для управления спиновыми состояниями в устройствах.

«Раньше мы могли наблюдать эти структуры только экспериментально. Теперь их можно проектировать и оптимизировать на уровне квантовых взаимодействий», — отметил Ян. Результаты уже привлекли внимание разработчиков магнитной памяти, где контроль над спиновыми конфигурациями может увеличить плотность хранения данных в десятки раз.

Исследование не только закрывает фундаментальный пробел в физике магнетизма, но и создаёт инструмент для инженеров. Следующим шагом станет применение метода к другим классам материалов, включая топологические магнетики, где спиральные структуры могут проявлять экзотические квантовые эффекты.

Читайте также
ЛЕНТА

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro