Операция выполнена!
Закрыть

Группа исследователей под руководством Университета штата Колорадо совершила прорыв в технологии 3D-рентгеновской визуализации. Учёные впервые провели высокодетальную компьютерную томографию (КТ) внутренней структуры крупного плотного объекта — лопатки газовой турбины (gas turbine blade), элемента турбомашин, отвечающего за преобразование энергии газового потока — с использованием компактного лазерного рентгеновского источника. Результаты открывают новые возможности для аэрокосмической промышленности, аддитивного производства и других областей.

Технология основана на лазере ALEPH, который генерирует рентгеновские источники с энергией в миллионы электронвольт — на два порядка выше, чем в медицинских рентгеновских аппаратах. Это позволяет «просвечивать» объекты толщиной до 10 см из тяжёлых металлов, обеспечивая разрешение до микронного уровня. Для сравнения: современные промышленные КТ-сканеры дают разрешение на уровне миллиметров, занимая при этом целые помещения.

Фото: Colorado State University Walter Scott, Jr. College of Engineering

Ключевой элемент метода — создание микроскопического источника рентгеновского излучения с помощью импульсного лазера петаваттного класса. При фокусировке лазерного луча до интенсивности 1021 Вт/см2 (площадь пятна меньше диаметра человеческого волоса) электроны в мишени ускоряются до энергий в несколько миллионов вольт. При столкновении с атомами тяжёлых металлов (например, тантала) эти электроны генерируют рентгеновские фотоны путём тормозного излучения. Длительность каждого импульса составляет лишь триллионные доли секунды, что позволяет фиксировать процессы внутри движущихся объектов — например, работающего реактивного двигателя.

«Наш подход не только компактен, но и неразрушающ, — подчеркнул ведущий автор исследования Рид Холлингер. — Мы видим детали размером 50 микрон в трёх измерениях, не повреждая образец. Для аддитивного производства это означает революцию в контроле качества: вместо выборочной проверки можно сканировать каждую деталь». Технология также решает проблему артефактов, возникающих при традиционной КТ из-за рассеяния излучения на границах материалов разной плотности.

Первым испытательным образцом стала лопатка турбины весом 3,2 кг из жаропрочного сплава. Сканирование выявило внутренние дефекты литья — микропоры размером 100–200 мкм, которые невозможно обнаружить ультразвуком или стандартной рентгенографией. Для реконструкции 3D-модели учёные сделали 180 проекций с угловым шагом 1°, используя детектор с разрешением 25 микрон.

Планы команды амбициозны: к 2026 году в заработает лазерный комплекс ATLAS мощностью 2 петаватта. Это позволит масштабировать технологию для сканирования объектов до метра в поперечнике.

Представьте томографию гиперзвукового двигателя в реальном времени или моментальную проверку сварных швов на космическом корабле. Сейчас такие задачи требуют остановки и разборки систем. Наш метод устранит эти ограничения

Джеймс Хантер, представитель Национальной лаборатории Лос-Аламоса, соавтор исследования

Разработка уже привлекла интерес корпораций Siemens Energy и GE Aviation. В перспективе технология может найти применение даже в экспериментах по инерционному термоядерному синтезу, где требуется сверхбыстрая диагностика плазменных мишеней. Следующая цель — достичь субмикронного разрешения и интегрировать алгоритмы машинного обучения для автоматического анализа дефектов. Такой симбиоз физики и ИИ приближает эру, когда рентгеновская томография станет такой же быстрой и доступной, как фотография.

Читайте также
ЛЕНТА

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro