Операция выполнена!
Закрыть
Хабы: Go, Искусственный интеллект

Прежде всего хочу сказать, что я не являюсь никаким специалистом, даже джуновского лвла, просто безработный студент, пишущий на коленке свои пет-проекты. И код, и тем более архитектура далеки от идеала. Однако, я думаю, некоторые моменты, о которых я буду рассказывать далее в статье, могут быть интересны полноценным разработчикам как бэкенда, так и ИИ-агентов.

С технологией RAG я познакомился около года назад на хакатоне, посвященном обработке естественного языка. Там мы с командой разработали его простейшую имплементацию, с которой и заняли «почетное» 5-е место. Подробно об этой технологии в данной статье рассказывать я не буду, так как статья не о ней; вкратце - RAG позволяет генерировать ответы LLM на основании базы контекста, необходимый фрагмент которой вместе с запросом передается языковой модели на вход.

Шло время, мои навыки росли, я полностью пересел с Python на Go, начал интересоваться больше бэкенд-разработкой и думал какой бы пет-проект мне написать. Идея приложения, связанного с ИИ на Go кажется сперва странной: язык предназначен для совершенно других целей, отсутствуют хорошие библиотеки сообщества, вроде Langchain (langchaingo слишком слаба). И с одной стороны, если бы идеей было обучить собственную языковую модель - это было бы действительно глупо. Но чем больше я думал о разработке RAG и ИИ-агентов, тем больше понимал, что это чисто бэкенд задача, с нулем машинного обучения под капотом.

Эта мысль натолкнула меня на следующие рассуждения: зачем использовать низкопроизводительный Python, если можно создать более эффективное ИИ-приложение на Go, к тому же с лучшей масштабируемостью? Конечно, в основном это дело привычки и наличия в питоне необходимых библиотек, да и мало кто из-за небольшого прироста производительности пойдет переписывать всех ИИ-агентов на Go, Rust или C++. Но для меня это и стало хорошей идеей для своего странненького пет-проекта.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro