Операция выполнена!
Закрыть
Хабы: Блог компании Яндекс, Машинное обучение, Искусственный интеллект, Алгоритмы, Геоинформационные сервисы

Вопрос точности прогнозирования осадков — один из ключевых вызовов в метеорологии. Мы все сталкиваемся с ситуациями, когда дождь буквально появляется «из ниоткуда», несмотря на оптимистичный прогноз. Особенно остро эта проблема проявляется летом, когда проливные кратковременные дожди сложно поймать заблаговременно. Об этой проблеме знает и наша команда Яндекс Погоды и ищет способы решить её.

Если бы меня попросили назвать слово, которое лучше всего подходит для прогноза осадков, я бы с уверенностью выбрал «сложность». В осадках она подстерегает нас всюду: от способов прогнозирования до оценки качества полученного прогноза. Потому в научных статьях про нейросетевой прогноз погоды (GraphCast, Pangu Weather, Aurora и т. д.) осадки или совсем не участвуют, или прогнозируются раз в 6 часов без упоминания о метриках. Либо же создаётся локальная модель под регион (например, MetNet для США).

В Яндекс Погоде мы используем множество ML‑моделей в рамках наших технологий прогноза Метеум и OmniCast, постоянно их улучшаем и постепенно заменяем на более продвинутые, повышая качество прогноза для наших пользователей. Недавно мы научились прогнозировать грозы, а до этого — улучшили прогноз температуры за счёт использования пользовательских метеостанций.

Меня зовут Стефеев Дмитрий, я разработчик группы ML и качества прогноза в Яндекс Погоде. Сегодня я и моя команда хотим представить новые модели для прогноза осадков и рассказать, почему мы на них перешли и как этот переход повлиял на качество.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro