Операция выполнена!
Закрыть
Хабы: Python, Работа с видео, Обработка изображений

В процессе разработки RAG-системы для обработки видеоконтента передо мной встала задача генерации качественных описаний для большого объема видео-клипов с использованием мультимодальных языковых моделей. Клипы имели продолжительность около 10 секунд, в отдельных экспериментах мы тестировали материал длиной в несколько десятков секунд. Финальные описания составляли от 300 до 2000 токенов и после генерации разбивались на чанки для индексации в векторной базе данных. При тестировании различных подходов обнаружились значительные различия в скорости и качестве обработки. Компактные модели, работающие с отдельными кадрами изображений (Phi, DeepSeekVL2, Moondream), демонстрировали существенно более высокую скорость по сравнению с моделями полноценной обработки видео, однако качество генерируемых описаний оставляло желать лучшего. Типичный workflow включал конкатенацию описаний отдельных кадров, при этом в DeepSeekVL2 дополнительно использовался system prompt для более интеллигентного объединения результатов анализа кадров. Модели для обработки изображений стабильно укладывались в временные рамки 3-5 секунд на клип, что значительно быстрее требуемого лимита. Полноценные видео-модели, получающие на вход целые видеоклипы, изначально генерировали описания за 30 секунд на vanilla PyTorch. Применение VLLM ускорило процесс до 12-15 секунд, а SGLang позволил достичь целевых 8-10 секунд на клип. Эти временные рамки позволили настроить обработку на кластере из 20 RTX 4090 и сгенерировать около миллиона описаний за месяц для production-системы. Благодаря применению различных техник оптимизации инференса удалось не только достичь поставленных временных целей, но и существенно превзойти их, завершив генерацию необходимого объема описаний за две недели вместо месяца. Система успешно развернута в продакшене и демонстрирует стабильную производительность. Данная статья представляет систематизированный анализ практического опыта оптимизации инференса мультимодальных LLM, полученного в ходе решения реальной production-задачи. Особое внимание уделяется сравнению эффективности различных подходов к ускорению, включая современные специализированные фреймворки VLLM и SGLang, а также аппаратные оптимизации на базе TensorRT.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro