Хабы: Исследования и прогнозы в IT, Микросервисы, MongoDB, Natural Language Processing
Проверка юридических документов с помощью визуальных помощников может оказаться важной задачей. Если человек способен хранить в голове одновременно в зоне его мозговых вычислений 6-8 параметров, ну может и больше, если гений... А остальные держать в блокноте. То ИИ учитывает больше параметров, те же модели LLM доступны с количеством 70 миллиардов параметров. То есть мы-то тоже ежедневно принимаем решения на основе большого количества входных параметров: купить ли сегодня эту вещь, поехать ли отдыхать на море, бросив все, доехать на такси или на автобусе. Но учитываем не все сразу, хотя что-то учитывается на подсознательном уровне. Эдакое дело вкуса, когда просто чувствуешь, что так правильнее, и в итоге не прогадал.
Правда люди еще не научились влиять на решения сети. У нейросетей особенные вкусы. Если GAN-сеть создает нам девушку, у которой 2 руки, то для каких-нибудь художников эпохи Сюрреализма это могло бы показаться гениальным. Двумя руками обнимает парня, словно вцепилась в него всей душой и влюбилась всем сердцем... К сожалению или к счастью, в задачах создания юридических документов мало необходимости творить что-либо на уровне латентного вектора в цепочке между кодировщиком и декодировщиком. Но работа с юридическими документами – тот самый скоп задач, где важно найти судебную практику, предшествующие документы и просто оформить все примерно также.
Таким образом, работа с юридическими документами – лакомый кусочек уже лет так 5, особенно на зарубежном рынке, где задача автоматизации рутинной деятельности сводится именно к тому, чтобы из исторически предшествующих документов собрать что-то стоящее, применимое к текущему документу. По семантическому окрасу и истории работы с документом можно понимать, что именно перед тобой: проигрышная трактовка, выигрышная трактовка, доводы, играющие в пользу истца или аргументы, помогающие ответчику, если дело идет о судебных исках.
Читать далее