Операция выполнена!
Закрыть
Хабы: Natural Language Processing, Алгоритмы, Машинное обучение, Python

При про­ектировании RAG-системы инженер каждый раз сталкивается со множеством вопросов: какую базу данных использовать, как организовать получение релевантной информации, да даже выбор эмбеддера может занять приличное время, а это лишь вершина айсберга. Что хорошо работает в одной сфере, например в техподдержке, может полностью провалиться в другой — например, при анализе юридических документов. Поэтому задачей инженера является выявление особенностей предметной области и адаптации RAG системы к ним. Однако, чтобы это сделать, необходимо не только понимать, какие приёмы можно использовать, но и знать насколько они эффективны.

В данной статье мы разберём основные RAG техники, посмотрим их сильные и слабые стороны, сферы применения, а также немного поэкспериментируем. В следующей части статьи мы проведём тестирование этих техник на реальных пользовательских запросах из датасета Natural Questions и оценим качество работы с помощью RAGAS и BertScore, посмотрим на графики и разойдёмся, чтобы обдумать всё написанное. Поэтому предлагаю начать!

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro