Операция выполнена!
Закрыть
Хабы: Python, Data Mining, Data Engineering

В статье рассмотрен процесс предобработки текстов учебников для последующего анализа и обучения моделей машинного обучения. Показано, как из "сырого" текста, извлечённого из PDF, получить очищенный, структурированный и готовый к обработке набор данных. Основное внимание уделено этапам очистки текста от лишних символов, нормализации регистра, токенизации, лемматизации и удалению стоп-слов, а также POS-теггингу. Для каждого этапа приведены примеры с использованием Python и библиотек spaCy, re, а также альтернативные инструменты (NLTK, ftfy, clean-text). В качестве практического применения рассматривается проект EduText Analyzer, направленный на автоматизированный анализ учебников по иностранным языкам. Данные после предобработки сохраняются в форматах CSV и TXT, что обеспечивает дальнейшую обработку, анализ и обучение моделей. Статья предназначена для исследователей в области NLP, педагогов и разработчиков образовательных технологий.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro