Операция выполнена!
Закрыть
Хабы: Блог компании «Лаборатория Касперского», Машинное обучение, Тестирование IT-систем, Data Engineering, Информационная безопасность

Инструменты вроде OpenSearch, Elastic или Kibana давно стали стандартом для поиска и визуализации логов благодаря удобству и мощной поисковой системе. Однако, когда речь заходит о сложном анализе — агрегациях, парсинге, выявлении сложных закономерностей — их встроенные средства быстро достигают предела возможностей. Особенно сложно становится, если структура логов далека от идеала: например, как у нас — всё содержимое свалено в одно поле Message в формате JSON.

Меня зовут Игорь Щегловитов, я работаю экспертом по тестированию в QC облачной инфраструктуры и веб-порталов. Раньше наша команда решала такие задачи кастомными утилитами на C#, которые выгружали логи из ELK и анализировали их локально. Однако каждое новое требование превращалось в мини-проект: доработать код, написать новые парсеры, скрипты агрегации и фильтрации. Работа замедлялась, техдолг рос.

Я решил использовать связку AI-агентов с кастомными промптами, собственный сервисный слой (MCP) для доступа к логам и LLM-модель, чтобы превращать пользовательские запросы в автоматический алгоритм анализа. Так, кейсы вроде «Посчитай уникальных пользователей за сутки» или «Проанализируй ошибки за период» решаются без ручного кодинга.

Под катом мой кейс: расскажу, как это сделал, поделюсь ссылкой на гитхаб, так что, если хотите упростить себе анализ логов, — эта статья для вас.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro