Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Машинное обучение

Большие языковые модели (LLM) уже умеют писать код, анализировать данные и даже проектировать архитектуру. Но большинство пользователей по-прежнему работают с ними неправильно — перегружают контекст, теряют важную информацию и удивляются «галлюцинациям» модели.

В статье — практический разбор того, как устроено контекстное окно и почему именно контекстная инженерия становится новым навыком разработчиков. Разберём типичные ошибки, правила оптимизации, принципы управления памятью LLM и реальные стратегии, которые используют команды, работающие с Claude, ChatGPT и GitHub Copilot.

После прочтения вы поймёте, как добиться стабильных и точных ответов от модели, тратить меньше токенов и управлять контекстом так, как это делают инженеры ведущих AI-компаний.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro