Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Машинное обучение

ИИ-агенты становятся все умнее, но на практике автоматизация сквозных тестов по-прежнему требует ручной работы и терпения. Даже последние языковые модели прекрасно пишут небольшие тесты, а вот с реальными сценариями — где интерфейс меняется, а цепочка действий длинная — всё не так гладко, как хотелось бы.

Недавнее исследование добавляет неожиданный штрих в картину: оказывается, перевод пользовательского сценария в написанный «по-человечески» тест гораздо сложнее, чем простая генерация кода. Ключ не в размерах модели, а в том, насколько хорошо она умеет понимать логику действий, ориентироваться в структуре интерфейса и точно связывать описание с настоящими элементами страниц.

В этом разборе — как устроен фреймворк GenIA-E2ETest, который превращает обычный текст в работающие тестовые сценарии. Почему одни шаги модели даются легко, а на других она всё ещё спотыкается, как люди помогают ИИ “дочищать” код — и что это значит для команд, которые хотят сделать автоматизацию тестирования быстрой, прозрачной и реально полезной.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro