Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Машинное обучение

Пошаговый разбор с метафорами, формулами и лайфхаками, которые спасут ваш fit()

Привет, хабровчане! В мире ML градиентный спуск это двигатель внутреннего сгорания: он везде, он работает, но мало кто заглядывает под капот, а ведь именно он превращает случайные веса в модель, которая угадывает котиков, переводит тексты и генерирует картинки.

Вы запускаете model.fit() - и через 100 эпох у вас есть результат, но как именно нейросеть «находит выход» из хаоса параметров? Почему иногда она перепрыгивает минимум, а иногда зависает в тупике? И как настроить learning_rate, чтобы не ждать до пенсии?

Полный разбор с нуля, с формулами и примерами. Давайте разберём по полочкам, чтобы было понятно даже новичку.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro