Хабы: Машинное обучение, Администрирование баз данных, Big Data, Хранилища данных, Data Engineering
В данной статье рассматриваются способы интеграции Large Language Models (LLM) в корпоративные системы хранения данных. Основное внимание уделено использованию LLM для автоматического извлечения информации из текстовых данных с последующим формированием SQL-запросов. В рамках исследования также изучаются методы пост-обработки результатов SQL-запросов с целью улучшения точности и адаптивности моделей к конкретным характеристикам и особенностям баз данных.
Работа включает в себя анализ существующих решений и методов оценки эффективности LLM в контексте их интеграции в корпоративные информационные системы. Особое внимание уделяется применению Preference Learning via Database Feedback — подхода, направленного на обучение моделей на основе обратной связи от баз данных, что способствует более точному и адаптивному выполнению запросов пользователей.
Исследование также охватывает разработку примеров интеграции LLM в реальные корпоративные хранилища данных с целью демонстрации практической применимости и эффективности предлагаемых подходов.
Читать далее