Операция выполнена!
Закрыть
Хабы: Блог компании Альфа-Банк, Машинное обучение, Python

Еще со времён школы меня будоражили возможности, которые дают компьютеры. Написать программу — это как создать что-то материальное своими руками. Неделю назад я за один вечер прочитал книгу Себастьяна Рашки «Строим LLM с нуля» (доступна на английском бесплатно), в которой без сложной теории матанализа описывается архитектура современных LLM и как их тюнить. 

Если вы интересовались, как работают LLM, то уже имеете представление, что модели умеют предсказывать следующее слово и что за этим стоит математика. Но на этом объяснение, как правило, заканчивается. Детали того, как они предсказывают следующее слово, часто рассматриваются как черный ящик.. В этой статье предлагаю рассмотреть эту тему подробнее и познакомиться с тонкой настройкой (fine-tuning) LLM для решения условно-практической задачи классификации с помощью примеров кода, приведенных в упомянутой книге. 

Статья устроена так, что все шаги в статье вы можете повторить и в конце получить набор скриптов для выстраивания пайплайна обучения LLM. Я же описал свои шаги, потому что лучший способ что-то понять — это применить теорию на практике и попытаться объяснить результат кому-то. 

Чтобы приступить к лабораторной работе, достаем двойные листочки, расчехляем питон и тиктокен.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro