Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Машинное обучение, Программирование

Всем привет! В первой части мы разобрали теорию: почему LLM «забывают» информацию в середине промпта, как на это влияет архитектура внимания и при чём здесь ротационные кодирования (RoPE). Мы выяснили, что эффект Lost in the Middle — это закономерное следствие того, как устроены современные трансформеры и как они обучаются.

Но насколько всё плохо на практике? Если разработчик модели заявляет контекстное окно в 128k или даже 1M токенов — можем ли мы на него рассчитывать в реальном продакшене?

Во второй части мы переходим от теории к цифрам на бенчмарках. Мы разберём, почему стандартные тесты "иголка в стоге сена" (NIAH) безнадёжно устарели и как новые метрики вроде RULER и NoLiMa показывают реальное «рабочее» окно моделей, которое иногда в 60 раз меньше заявленного.

В финале этой статьи я соберу практические архитектурные принципы, которые помогают проектировать LLM-системы так, чтобы длинный контекст действительно повышал качество, а не превращался в источник ошибок.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro