Операция выполнена!
Закрыть
Хабы: Python, Статистика в IT, Аналитика мобильных приложений

После релиза метрика почти всегда меняется. Иногда это реальный эффект изменения, иногда - сезонность, маркетинг, внешний фон или просто шум. Если AB теста не было, а решение все равно нужно принимать, остается вопрос: как аккуратно оценить влияние релиза по истории метрики и не обмануться простым сравнением до и после.

В статье разбираю практический подход causal impact для случая, когда у нас есть одна метрика во времени и понятная дата изменения. Строим контрфакт (counterfactual) - прогноз того, какой была бы метрика без релиза - и сравниваем его с фактом. На этой основе считаем эффект в абсолютных значениях, накопленный эффект и относительный вклад в процентах.

Отдельное внимание уделяю проверкам, без которых такой анализ может превратиться в тыкву: качество прогноза на периоде до изменения, учет зависимости по времени через block bootstrap, устойчивость к выбору окна и плацебо даты, которые помогают понять, выделяется ли реальный эффект на фоне ложных интервенций.

Материал ориентирован на продуктовые задачи: когда релиз уже сделан, данные есть, а надежной оценки эффекта нет. В следующей части перейдем к более частому сценарию, когда изменение затронуло не всех, и вместо одной линии метрики у нас появляется набор линий по группам (географии, сегменты, кластеры). Там разберем синтетический контроль и diff-in-diff и частые ошибки, которые встречаются в таких данных.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro