Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Поисковые технологии

Все говорят про embedding-модели в RAG: бенчмарки MTEB, размеры моделей, chunking-стратегии. Но никто не задаёт главный вопрос: а сколько вообще документов может найти single-vector retrieval?

Google DeepMind посчитали. Оказалось, что даже 4096-мерные эмбеддинги упираются в математический потолок — есть задачи, где они физически не смогут найти нужный документ из топ-2, даже если модель идеально обучена.

В статье разбирается исследование LIMIT, показаны примеры, где dense retrieval проваливается (а BM25 справляется), и объяснено, почему для production-систем нужен гибридный поиск, а не слепая вера в SOTA-эмбеддинги.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro