Операция выполнена!
Закрыть
Хабы: Машинное обучение, Алгоритмы, Python, Искусственный интеллект

С точки зрения нейронных сетей мир плоский. Иерархические данные напоминают, что это не так.

Работа нейронных сетей неотделима от допущения, что всего одна функция отображает вводные данные на выходные. Но в реальных условиях данные редко вписываются в такие рамки.

Допустим, есть клиническое исследование, проводимое сразу в нескольких больницах. Лекарство одно и то же, но отличаются популяции пациентов, процедуры и порядок ведения записей. В таких случаях наблюдения группируются в разные датасеты, каждый из которых управляется скрытыми параметрами.

Стандартные нейронные сети в таких условиях жёстко сбоят. Обучите одну модель сразу на всех датасетах — и она расфокусируется из-за различий, станет усреднять функции, которые усреднять не следует. Натренируйте по модели на каждом из датасетов — и получите переобучение, в особенности, если датасеты будут маленькими. Такие обходные манёвры как задействовать статические векторные представления (эмбеддинги) или постоянно наращивать размер сети в сущности не решают ключевую проблему: система запоминает причуды сети, не моделируя её структуру, складывающуюся на уровне датасета. А ведь именно эта структура — залог качественных результатов.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro