Операция выполнена!
Закрыть
Хабы: Python, Искусственный интеллект, Машинное обучение, Алгоритмы, Математика

В этой статье пойдет речь об одной из самых сложных и интересных архитектур — трансформере, лежащей в основе современных моделей от OpenAI и Google DeepMind. И это не научпоп для обывателя с наивным уровнем объяснения, а полноценный учебный материал, который поможет вам понять работу трансформера на фундаментальном уровне без черных ящиков типа TensorFlow и Pytorch.

А для того чтобы лучше вникнуть, давайте напишем настоящий мини-трансформер на процедурном Python и обучим его!

Данный материал можно изучать в разных режимах:

* Как объяснение архитектуры для общего представления;

* Как полноценный гайд с чтением кода и самостоятельной практикой;

* Как основу для собственных экспериментов.

Вы сами можете выбрать тот режим, который нужен для ваших целей на данный момент.

Наш трансформер будет довольно простым: со статическим графом и одноблочными энкодером и декодером. Сам код написан в парадигме процедурного программирования (за исключением некоторых модулей) и может быть прочитан на любом уровне и без знания ООП. И все же это будет полноценный обучаемый трансформер с мультиголовым вниманием, батчами данных, параллельным вычислением и множеством параметров.

Для закрепления материала, выполните Домашнее задание, которое ждет вас в конце статьи.

Напишем трансформер!
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro