Операция выполнена!
Закрыть
Хабы: Блог компании Издательский дом «Питер», Машинное обучение, Искусственный интеллект, Алгоритмы, Тестирование IT-систем

Введение

Благодаря предобучению, большие языковые модели (LLM) приобретают широкие лингвистические способности и общий «кругозор» о мире. Но постобучение — не менее важный этап, на котором они как раз усваивают конкретные намерения человека, ограничения, присущие предметной области, а также требования к надёжности, предъявляемые в продакшне. В  Netflix исследовали, как именно LLM могут открыть новые грани рекомендаций, персонализации и поиска. Для этого в Netflix попробовали адаптировать универсальные обобщённые модели к имеющимся условиям так, чтобы они лучше отражали содержание каталога фильмов и нюансы истории взаимодействия пользователей с сайтом. В масштабе такой компании как Netflix постобучение быстро превращается как в инженерную проблему, так и в проблему моделирования: приходится выстраивать сложные конвейеры данных и оперировать ими, координировать распределённое состояние в масштабах многоузловых кластеров GPU и оркестровать потоки задач, в рамках которых перемежаются обучение и логический вывод. В этой статье описаны архитектура и инженерная философия применяемого в Netflix фреймворка постобучения, который был разработан командой по платформе ИИ с целью скрыть сложность инфраструктуры — так, чтобы исследователи и разработчики моделей могли сосредоточиться на внедрении инноваций, а не на латании распределённых систем.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro