Хабы: Машинное обучение, Искусственный интеллект, Программирование, Алгоритмы
Привет, Хабр! На связи CEO команды Compressa AI. Недавно обнаружил для себя крутой базовый курс по эффективному запуску и инференсу LLM моделей от легенды AI мира — Andrew NG и его платформы DeepLearning. Он полностью на английском языке в формате видео, поэтому я осмелился адаптировать его под формат Хабра на русском языке. Знания должны быть доступны всем и в удобной форме, так ведь?
Многие команды (включая и Compressa AI) начинали LLM проекты с использования облачных API. Но по мере развития все больше разработчиков хотят использовать open-source LLM, чтобы экономить на токенах, снижать latency, запускать fine-tuning на собственных данных и в целом меньше зависеть от внешних моделей.
Из этого курса вы узнаете детали эффективного обслуживания и дообучения open-source LLM, включая методы обработки множества запросов от нескольких пользователей. Используя несколько таких методов одновременно, вы можете улучшить как задержку (latency), так и пропускную способность (throughput). Например, благодаря применению последних open-source технологий в своем продукте, мы добились увеличения пропускной способности до 70x на 1 GPU в сравнении с дефолтными Hugging Face & PyTorch.
Курс слишком объемный даже для лонгрида, в нем много практического кода, поэтому сегодня начну с первых уроков и выпущу следующие части, если увижу живой интерес. Это адаптация, а не прямой копипаст, поэтому где-то немного расширю курс информацией от себя, а где-то сокращу. Также хочется отметить, что русифицирование терминов вокруг LLM — дело довольно неблагодарное, поэтому часть из них будет на английском.
Читать далее