Хабы: Блог компании OTUS, Машинное обучение, DevOps, Data Engineering
В практике любого инженера машинного обучения обязательно присутствует инструмент для управления жизненным циклом машинного обучения: отслеживание экспериментов, управление и деплой моделей и проектов. В этой статье я кратко расскажу о таком инструменте компании Weight & Biases, незаслуженно обойденным вниманием на просторах рускоязычного пространства.
Работа в современных реалиях требуют быстрой разработки и оценки моделей. Существует множество компонентов: изучение обучающих данных, обучение различных моделей, объединение обученных моделей в различные комбинации (ансамблирование) и т. д.
Много компонентов = много мест, где можно ошибиться = много времени, потраченного на отладку. Вы можете упустить важные детали, и вам придется заново обучать модель, или вы можете обучиться на неправильных данных (утечка информации). Или вы можете использовать неправильную модель для генерации представления.
Именно здесь на помощь приходит W&B.
Читать далее