Хабы: Блог компании Wunder Fund, Машинное обучение, Программирование, Python
ML‑эксперименты, по своей природе, полны неопределённости и сюрпризов. Небольшие изменения могут вести к огромным улучшениям, но иногда даже самые хитрые уловки не дают результатов.
В любом случае — успешная работа в сфере машинного обучения держится на систематическом применении итеративного подхода к экспериментам и на исследовании моделей. Именно здесь ML‑специалисты часто сталкиваются с беспорядком. Учитывая то, как много путей они могут избрать, им тяжело бывает удержать в поле зрения то, что они уже попробовали, и то, как это отразилось на эффективности работы моделей. Более того — ML‑эксперименты могут требовать много времени. С ними сопряжён риск пустой траты денег на повторные запуски тех экспериментов, результаты которых уже известны.
С помощью трекера экспериментов, вроде neptune.ai, можно скрупулёзно логировать сведения об экспериментах и сравнивать результаты разных попыток. Это позволяет выяснять то, какие настройки гиперпараметров и наборы данных вносят положительный вклад в эффективность работы моделей.
Но запись метаданных — это лишь половина секрета успешного ML‑моделирования. Нужно ещё иметь возможность проведения экспериментов таким образом, который позволяет быстро получать нужные результаты. Многие команды дата‑сайентистов, в основе рабочих процессов которых лежит система Git, сочли CI/CD‑платформы идеальным решением.
В этой статье мы исследуем вышеописанный подход к управления ML‑экспериментами и поговорим о том, в каких ситуациях его применение оправдано. Мы уделим основное внимание платформе GitHub Actions — системе, интегрированной в GitHub. Но освещённые здесь идеи применимы и к другим CI/CD‑фреймворкам. TL;DR под катом.
Читать далее