Хабы: Natural Language Processing, Искусственный интеллект, Математика, Семантика
С.Б. Пшеничников
В статье изложен новый математический аппарат вербальных вычислений в NLP (обработке естественного языка). Слова погружаются не в действительное векторное пространство, а в алгебру предельно разреженных матричных единиц. Вычисления становятся доказательными и прозрачными. На примере показаны развилки в вычислениях, которые остаются незамеченными при использовании традиционных подходов, а результат при этом может быть неожиданным.
Использование IT в обработке естественного языка (Natural Language Processing, NLP) требует стандартизации текстов, например, токенизации или лемматизации. После этого можно пробовать применять математику, поскольку она является высшей формой стандартизации и превращает исследуемые объекты в идеальные, например, таблицы данных в матрицы элементов. Только на языке матриц можно искать общие закономерности данных (чисел и текстов).
Если текст превращается в числа, то в NLP это сначала натуральные числа для нумерации слов, которые затем погружаются в действительное векторное пространство.
Возможно, следует не торопиться это делать, а придумать новый вид чисел более пригодный для NLP, чем числа для исследования физических явлений. Такими являются матричные гипербинарные числа. Гипербинарные числа - один из видов гиперкомплексных чисел.
Для гипербинарных чисел существует своя арифметика и если к ней привыкнуть, то она покажется привычнее и проще пифагорейской арифметики.
В системах поддержки принятия решений (DSS) текстами являются оценочные суждения и пронумерованная шкала вербальных оценок. Далее (как и в NLP) номера превращаются в векторы действительных чисел и используются как наборы коэффициентов средних арифметических взвешенных.
Читать далее