Операция выполнена!
Закрыть
Хабы: Машинное обучение, Процессоры, Высокая производительность, Python

В командах ML-инженеров часто пользуются метрикой «GPU Utilization» (Загруженность процессора), чтобы понять, насколько активно задействуется в работе процессор. Чтобы узнать эту информацию, обычно достаточно выполнить команду nvidia-smi в строке терминала. Во многих интегрированных наблюдательных инструментах загруженность процессора также отслеживается как основная характеристика производительности. Но иногда, как ни удивительно, эта метрика даёт не слишком точное представление о производительности GPU. На самом деле, GPU можно загрузить на 100%, выполняя лишь операции чтения и записи (в памяти), но при этом 0 вычислений. Эта статья – не о том, как мы это выяснили, а о том, что нам удалось узнать по ходу дела.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro