Хабы: Блог компании X5 Tech, Математика, Статистика в IT, IT-компании, Big Data
Всем привет! A/B тестирование уже давно стало стандартом в проверке гипотез и улучшении продуктов в X5. Но, как ни странно, многие из «модных» техник, которые применяются в A/B тестировании, на самом деле, не что иное, как вариации старой доброй линейной регрессии.
Основная идея здесь проста: правильное добавление новых переменных в модель помогает лучше контролировать внешние факторы и уменьшать шум в данных. Это позволяет точнее оценить эффект от воздействия и объединить разные статистические подходы, которые обычно рассматриваются отдельно. Но почему это работает? Почему всё сводится к тому, что добавление переменных помогает объединить, казалось бы, разрозненные техники?
Чтобы разобраться в этом, для начала вспомним основы линейной регрессии, после чего перейдём к различным статистическим методам снижения дисперсии и покажем, как они сводятся к линейной регрессии. Затем объединим все техники вместе и на примере покажем, как они работают на практике.
Читать далее