Операция выполнена!
Закрыть
Хабы: Big Data, Data Engineering, Data Mining, Искусственный интеллект, Машинное обучение

Дженсен Хуанг в своем выступлении на саммите «Data+AI» сказал: «Генеративный ИИ есть везде, в любой отрасли. Если в вашей отрасли еще нет генеративных ИИ, значит вы просто не обращали внимания на это».

Однако широкое распространение вовсе не означает, что эти модели безупречны. В реальных бизнес-кейсах модели очень часто не достигают цели и нуждаются в доработке. Вот тут-то и приходят на помощь оценки LLM: они помогают убедиться, что модели надежны, точны и соответствуют бизнес-предпочтениям.

В этой статье мы подробно разберем, почему оценка LLM имеет решающее значение, и рассмотрим метрики, фреймворки, инструменты и сложности оценки LLM. Мы также поделимся некоторыми надежными стратегиями, которые мы разработали в ходе работы с нашими клиентами, а также расскажем о лучших практиках.

Что такое оценка LLM?

Оценка LLM - это процесс тестирования и измерения того, насколько хорошо крупные языковые модели работают в реальных ситуациях. При тестировании этих моделей мы наблюдаем, насколько хорошо они понимают и отвечают на вопросы, насколько плавно и четко они генерируют текст и имеют ли их ответы смысл в контексте. Этот шаг очень важен, потому что он помогает нам выявлять любые проблемы и улучшать модель, гарантируя, что она может эффективно и надежно справляться с задачами.

Зачем вам нужно оценивать LLM?

Все просто: чтобы убедиться, что модель соответствует задаче и ее требованиям. Оценка LLM гарантирует, что она понимает и точно реагирует, правильно обрабатывает различные типы информации и общается безопасным, понятным и эффективным способом. Оценка LLM позволяет нам точно настроить модель на основе реальной обратной связи, улучшая ее производительность и надежность. Проводя тщательные оценки, мы гарантируем, что LLM полностью может удовлетворять потребности своих пользователей, будь то ответы на вопросы, предоставление рекомендаций или создание контента.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro