Операция выполнена!
Закрыть
Хабы: Блог компании SberDevices, Блог компании Сбер, Машинное обучение, Искусственный интеллект, Open source

Салют, Хабр! В начале ноября мы делились с вами новостями о нашем флагмане GigaChat MAX и пообещали рассказать подробнее о процессе создания наших Pretrain-моделей. Пришло время сдержать слово и даже пойти дальше! 

Предобучение больших языковых моделей — это одна из наиболее ресурсозатратных стадий, которая непосредственно влияет на весь дальнейший процесс обучения GigaChat. От успешности обучения Pretrain-модели напрямую зависит качество всех следующих этапов обучения, например, Alignment и Vision. Поэтому сегодня мы хотим поделиться весами младшей модели линейки GigaChat версий base и instruct. Модель называется GigaChat-20B-A3B, так как построена на перспективной МоЕ-архитектуре!

Но и это ещё не всё. Вместе с весами мы делимся с сообществом улучшенной реализацией DeepSeek МоЕ, а также кодом для механизма концентрации (а что это такое — читайте дальше ;)). Важно отметить, что хотя GigaChat-20B-A3B обучался на триллионах токенов преимущественно русского текста, он ещё способен на хорошем уровне понимать другие языки. Так что мы делимся мультиязычной моделью. О том, как запускать модель, какие версии доступны и как пользоваться контролируемой генерацией с помощью механизма концентрации, расскажем прямо сейчас!

Узнать что такое MoE
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro