Операция выполнена!
Закрыть
Хабы: Искусственный интеллект

На протяжении более десятка лет компании придерживались одного, как им казалось, простого и надёжного правила: если ИИ-системы постоянно масштабировать, то они будут становиться всё умнее и умнее. Такая гипотеза возникла не на пустом месте. В 2017 году исследователи из Baidu доказали, что, алгоритмы ИИ обучаются быстрее, если задействовать бОльшее количество данных и вычислительной мощности — независимо от того, была ли система разработана для распознавания изображений, текста или синтеза речи. Причём такие улучшения можно спрогнозировать с помощью математической модели.

Такая закономерность побудила ИИ-компании вкладывать сотни миллионов в крупные вычислительные кластеры и массивы данных. Риск себя оправдал, и теперь вместо сырой машинной обработки текстов у нас есть чат-боты, умело отвечающие на запросы пользователей.

Но сегодня эта, казалось бы, прописная истина “чем больше, тем лучше” подвергается сомнению.

В недавних отчётах, опубликованных Reuters и Bloomberg, делалось предположение о сокращении доходов, полученных от масштабирования систем ИИ. Ранее The Information сообщала о том, что в OpenAI усомнились во взятом курсе после того, как невыпущенная модель Orion не оправдала ожиданий во время внутреннего тестирования.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro