Хабы: Big Data, Data Engineering, Data Mining, Искусственный интеллект, Машинное обучение
Независимо от того, улучшаете ли вы точность модели путем дообучения или улучшаете контекстную релевантность системы генерации с дополненной выборкой (RAG), понимание того, как разрабатывать и выбирать подходящий набор метрик оценки LLM для вашего варианта использования, является обязательным для построения надежного конвейера оценки LLM.
В этой статье вы научитесь всему, что нужно знать о метриках оценки LLM, включая примеры кода. Мы рассмотрим следующие вопросы:
Что такое метрики оценки LLM, как их можно использовать для оценки систем LLM, а также распространенные ошибки и что делает метрики отличными.
Различные методы вычисления метрик оценки LLM и почему подход LLM-as-a-judge («LLM как судья») является наиболее эффективным.
Как реализовать и выбрать подходящий набор метрик оценки LLM с использованием библиотеки DeepEval (GitHub: DeepEval).
Читать далее