Операция выполнена!
Закрыть
Хабы: Data Mining, Математика, Алгоритмы, R, Искусственный интеллект

Заголовок отсылает к знаменитой работе Attention Is All You Need, которая фактически перевернула мир ИИ, сделав его другим, не таким, как прежде. В этой научной публикации описаны принципы реализации архитектуры трансформеров, но в ее названии упоминается именно механизм внимания. Долгое время я пытался ответить себе на один простой вопрос: где все-таки заканчивается ML и начинается AI для задачи коммивояжера и вообще? Мне кажется, ответ пролегает где-то рядом с проростанием механизма внимания, который в 2014 году был предложен Dzmitry Bahdanau (извиняюсь, не знаю, как правильно писать по-русски его фамилию). Безусловно, были работы Хопфилда, получившего в 2024 Нобелевскую премию по физике, в том числе, за свою архитектуру нейронной сети, которая способна решать задачу коммивояжера. Были и другие работы, но, в случае разбора еще одного алгоритма из прошлого века, боюсь, нарваться на обратную связь в стиле: “дядь, не мороси, давай уже там про свой ИИ пиши, а не вот эти свои нафталиновые алгоритмы описывай”, поэтому про нейронную сеть Хопфилда готов написать, но только если будет ощутимая обратная связь.

Механизм внимания был предложен как способ улучшить seq-to-seq модели, применяемых для перевода текста с одного языка на другой. Кто бы мог подумать, но токены слов можно заменить координатами городов и попробовать решить задачу TSP той же моделью. В конце концов человек тоже использует одно и тоже серое вещество для решения разных задач. Первые попытки реализации этой идеи подразумевали наличие оптимального эталонного маршрута в виде, например, посчитанного решения Concorde. Но позже появилась идея использования техники обучения с подкреплением или Reinforcement learning. Таким образом, появилась нейронная сеть Pointer Networks, о которой собственно я и хотел сегодня поговорить.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro