Хабы: Big Data, Data Engineering, Data Mining, Искусственный интеллект, Машинное обучение
Оценка LLM-систем вручную — это утомительное, времязатратное и порой раздражающее занятие. Поэтому, если вам приходилось многократно прогонять набор промптов, чтобы вручную проверять каждый вывод LLM, вас обрадует, что эта статья научит вас всему необходимому для правильной оценки LLM и обеспечения долгосрочной эффективности вас и вашего приложения на основе LLM.
Оценка LLM относится к процессу обеспечения соответствия выходных данных LLM человеческим ожиданиям, которые могут варьироваться от этических и безопасных соображений до более практических критериев, таких как правильность и релевантность выходных данных LLM. С инженерной точки зрения эти выходные данные LLM часто можно найти в форме тестовых кейсов, в то время как критерии оценки формализуются в виде метрик оценки LLM.
На повестке дня:
В чем разница между оценкой LLM и оценкой системы LLM, а также их преимущества
Офлайн-оценки, что такое бенчмарки системы LLM, как создавать наборы данных для оценки и выбирать правильные метрики оценки LLM, а также распространенные ошибки
Оценки в реальном времени и их польза для улучшения наборов данных для офлайн-оценок
Реальные примеры использования систем LLM и как их оценивать, включая chatbotQA и Text-SQL
Читать далее