Операция выполнена!
Закрыть
Хабы: Машинное обучение, Искусственный интеллект, Data Mining, Big Data, Data Engineering

В последние пару лет RAG (retrieval-augmented generation) стал одной из самых обсуждаемых технологий в области обработки текстов и поисковых систем. Его идея проста: объединить поиск (retrieval) и генерацию (generation), чтобы быстрее находить нужную информацию и создавать более точные тексты.

Рост объёмов данных и информационного шума привёл к тому, что классические методы поиска и генерации уже не всегда справляются с новыми задачами. Например, большие языковые модели без доступа к актуальной информации могут искажать факты, а традиционные поисковики при запросах на естественном языке дают слишком общий результат. RAG решает эти проблемы, добавляя дополнительный "слой знаний" за счёт внешних баз данных, что особенно полезно для чат-ботов, систем вопрос-ответ, рекомендательных сервисов и многих других приложений.

Целью данной статьи является погружение читателя в технологию RAG, а также ознакомление с основными критериями и методами его улучшения. В этой статье мы обсудим, как именно устроен RAG, как правильно оценивать его эффективность и какие существуют техники улучшения – от уже известных методов до совершенно новых решений.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro