Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Машинное обучение

Если вы кликнули на данную статью, то скорее всего вы знаете, что в последнее время появляется огромное количество нейронных сетей. Они находят применение везде: и в задачах компьютерного зрения (Computer Vision, CV), и в обработке естественного языка (Natural Language Processing, NLP), распознавания и генерации речи (Speech-To-Text, STT; Text-To-Speech, TTS). Но есть что-то, что объединяет их все: у любой нейронной сети есть веса. И нам их, очевидно, нужно хранить и применять. Так как мы это делаем?

Если вы хорошо слушали и не забыли школьную информатику, вы скажете: в битах! И будете абсолютно правы. А сколько бит надо на хранение? Если мы возьмем какую-то стандартную библиотеку для обучения нейронных сетей (например PyTorch) и будем обучать модель самым простым образом, мы будем использовать тип данных FP32, он же Single precision. На каждое число мы будем выделять 32 бита. Тем не менее, сейчас стремительно набрали популярность большие языковые модели (Large Language Model, LLM), и в них огромное количество параметров. Недавно вышедшая модель от DeepSeek содержит порядка 671 млрд параметров. Можно оценить количество памяти, которая нам понадобится, если хранить все эти числа в FP32:

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro