Операция выполнена!
Закрыть
Хабы: C++, Python, Машинное обучение, Интернет вещей, Программирование микроконтроллеров

Распознавание жестов — это технология, которая позволяет людям взаимодействовать с устройствами без физического нажатия кнопок или сенсорных экранов. Интерпретируя жесты человека, эта технология нашла свое применение в различных потребительских устройствах, включая смартфоны и игровые консоли. В основе распознавания жестов лежат два ключевых компонента: сенсор и программный алгоритм.

В этом примере используются измерения акселерометра MPU 6050 и машинное обучение (ML) для распознавания трех жестов рукой с помощью ESP32. Данные из сенсора распознаются на микроконтроллере и результат выводится в консоль в виде названия жеста и вероятности результата. Модель ML использует TensorFlow и Keras и обучается на выборке данных, представляющей три различных жеста: "circle" (окружность), "cross" (пересечение) и "pad" (поступательное движение).

Разработка проекта начнется с получения данных из акселерометра для построения набора жестов. Затем мы проектируем полносвязную нейронную сеть для распознавания жестов, и подключим модель в проекте ESP32.

В следующей части рассмотрим как настроить Bluetooth LE (BLE) на ESP32 и Android устройстве. Передадим квантированный набор ускорений сенсора по BLE. Настроим Модель ML для распознания жестов на Android.

Читать далее
Читайте также
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro