Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Анализ и проектирование систем, Инженерные системы, Машинное обучение, Профессиональная литература

Палюх Борис Васильевич

д.т.н., профессор, заведующий кафедрой «Информационные системы» ТвГТУ, г. Тверь

Чесалов Александр Юрьевич

  к.т.н., генеральный директор ООО «Программные системы Атлансис», г. Тверь

В настоящей статье исследуются современные подходы к созданию автоматизированных систем прогнозируемого обслуживания многостадийных технологических процессов. На сегодняшний день, данные системы играют важнейшую роль в процессах автоматизации промышленных предприятий различных отраслей экономики. В статье делается основной акцент на  необходимость применения технологий искусственного интеллекта для создания, эксплуатации и развития автоматизированных систем прогнозируемого обслуживания. Указывается необходимость совместного применения методов нейронных сетей и теории свидетельств, в части уменьшения уровня неопределенности и увеличения уровня доверия к выходным данным для принятия решений. В результате исследования предложены два варианта архитектуры. Представлены данные эффективности применения автоматизированных систем прогнозируемого обслуживания в промышленности.

КЛЮЧЕВЫЕ СЛОВА: прогнозируемое обслуживание, промышленный Интернет вещей, периферийный искусственный интеллект, теория свидетельств, компьютеризированная система управления техническим обслуживанием.

Прогнозируемое обслуживание в промышленности (англ. Predictive Maintenance, PdM) – это стратегия проактивного обслуживания, которая использует современные инструменты и методы анализа данных для обнаружения аномалий в работе оборудования и потенциальных дефектов в производственных процессах, которая включает [1]:

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro