Операция выполнена!
Закрыть
Хабы: Блог компании Т-Банк, Машинное обучение, Искусственный интеллект

В прошлой статье мы исследовали проблему слишком навязчивой или нерелевантной рекламы, которая может ухудшить пользовательский опыт и вызвать негатив клиентов. 

Для повышения качества взаимодействия мы исследовали возможности сокращения отказов от рекламного контента, используя алгоритм машинного обучения, учитывающий персональные предпочтения пользователей.

Хотя процент уникальных обращений на линию поддержки с проблемой от рекламы затрагивает менее 0,2% от MAU, учитывая масштаб активной базы пользователей, на ежемесячной основе мы получаем порядка 20 тысяч сообщений о проблемах, связанных с рекламными уведомлениями.

Наша задача — выявить ключевые паттерны и категории жалоб, автоматизировав анализ текстовых данных с использованием обработки естественного языка (NLP) и алгоритмов кластеризации. В этой статье рассмотрим, как такие подходы позволяют структурировать отзывы пользователей и находить инсайты для оптимизации маркетинговых стратегий.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro