Хабы: Блог компании OTUS, Машинное обучение, Искусственный интеллект
Всем привет!
На волне популярности различных нейросетевых моделей, позволяющих генерировать связный текст, отвечающих на вопросы и позволяющих вести беседы, хотелось бы рассмотреть вопрос о том, а что вообще происходит внутри таких сетей.
Например, мы хотим научить нейронную сеть отличать кошек от собак или может яблоко от апельсина. Тогда мы просто говорим ей, что есть что, и на основе представленных данных, такая нейронная сеть особенным образом находит закономерности и строит самое обычное уравнение, которое в зависимости от подаваемого ей набора данных, пытается классифицировать изображение. Если мы хотим научить сеть предсказывать какие-то значения (погода, курс валют, отток клиентов банка), то мы понимаем, что ей надо предоставить выборку прошлых лет на основе которой она сможет найти закономерности, также сформировать уравнение и спрогнозировать результат.
С генерацией текста фактически тоже самое. Только здесь нейронная сеть учиться предсказывать всего лишь одно слово на основе представленного ей текста.
Читать далее