Операция выполнена!
Закрыть
Хабы: Блог компании Flocktory, Машинное обучение, Kubernetes, Распределённые системы

Привет! С вами Олег, Рамиль и Андрей из Flocktory. Мы руководим машинным обучением и разработкой в компании, сейчас активно внедряем AI для лучшей персонализации. В прошлом году наши команды реализовали ML-сервисы, внедрили ML Feature Store и переработали жизненный цикл моделей (о чём мы подробно рассказывали на HighLoad++: https://highload.ru/moscow/2024/abstracts/12929). В этой статье поразмышляем над следующим шагом для среднего размера компании, которая внедряет AI – как масштабировать проекты машинного обучения. Обработка, анализ и обучение на данных влекут за собой применение ML систем, в том числе нейросетей. Это требует больших вычислительных ресурсов: сотни гигабайт ОЗУ, десятки ядер CPU, а также видеокарты и (или) специальные чипы для ускорения вычислений.

Рассмотрим основные варианты ресурсов, которые можно использовать, сложности, связанные с их эксплуатацией, целесообразность вложений и vendor lock. Но сначала поговорим о природе трудностей, возникающих при масштабировании.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro