Операция выполнена!
Закрыть
Хабы: Open source, Python, Финансы в IT

Если вы задумывались о системной торговле, то, скорее всего, уже слышали о Python библиотеке Backtrader. Это гибкий фреймворк для тестирования торговых стратегий на исторических данных, который к тому же может быть подключён к автоторговле через API российского брокера. В нём можно реализовать практически любую логику, от простого пересечения скользящих средних до сложных многофакторных моделей.

Однако даже самая изощрённая стратегия ничего не стоит, если протестирована на неликвидных бумагах - там, где в реальной торговле вы бы просто не смогли купить или продать по нужной цене. Именно поэтому работа с ликвидными акциями - ключ к достоверному тесту.

Ликвидность - это не про «красиво на графике», а про то, как на самом деле исполняются сделки, насколько проскальзывает цена и как часто ваши заявки останутся без исполнения. Здесь нам поможет Игорь Чечет - автор библиотек AlorPy, TinkoffPy и FinamPy, размещенных на GitHub, которые дают удобный способ подключиться к API этих трёх брокеров из Python. Эти инструменты и библиотека-обертка - фактически мост между Backtrader и живым рынком.

В статье будем скачивать исторические данные настолько глубоко, насколько это возможно и находить самые активно торгуемые акции по кварталам за последние 20 лет при помощи моего Python скрипта.

Ваша критика или поддержка идей, приведённых в статье приветствуется.

Ищем ликвидность
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro