Хабы: Машинное обучение, Искусственный интеллект
Black box AI is bad AI — гласит слоган исследовательской группы Pr(AI)2R (Practical AI Alignment and Interpretability Research). Её основал прошлым летом стэнфордский автор Аттикус Гигер (Atticus Geiger). Своей миссией группа считать превратить AI в “хороший AI”, то есть сделать его интерпретируемым.
Пока авторы выпустили три работы: Rigorously Assessing Natural Language Explanations of Neurons (лучшая статья 2023 по версии BlackBoxNLP), в которой попытались провести интерпретацию на уровне нейронов, Linear Representations of Sentiment in Large Language Models, где исследовали репрезентацию настроения в LLM и RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations, где представили бенчмарк для оценки интерпретируемости. Есть и более ранние работы Гигера, в частности, он предложил исследовать внутренности LLM с помощью интервенций (изменения внутренних состояний). Суть проста: если зафиксировать скрытое состояние, и выход модели поменяется так, как будто какой-либо компонент производил это состояние, то это даёт нам право установить причинно-следственную связь. Но тут расскажем о том, к каким конструктивным идеям приводит исследование интерпретируемости. Как говорится, критикуешь — предлагай.
Читать далее