Операция выполнена!
Закрыть
Хабы: Машинное обучение, Искусственный интеллект, TensorFlow, Python

Всем привет! Меня зовут Алексей Рудак, и я – основатель компании Lingvanex, которая уже 8 лет занимается решениями в области машинного перевода и транскрипции речи. 

В этой статье рассматриваются несколько подходов, которые помогают повысить эффективность и качество языковых моделей для перевода. В качестве основы для тренировки моделей мы используем OpenNMT-tf.

Мы поговорим о методах, которые способствуют постепенной настройке параметров модели, что может привести к более стабильным процессам обучения. Эти техники позволяют тонко настроить процесс обновления весов модели, что улучшает сходимость и в конечном итоге дает лучшие результаты.

Кроме того, в статье обсуждаются стратегии управления темпами обучения, которые играют ключевую роль в том, насколько быстро модель обучается. Понимание того, как правильно корректировать темп обучения с течением времени, может существенно повлиять на динамику обучения и сделать модели более быстрыми и точными.

Наконец, мы затронем важность управления контрольными точками, что позволяет эффективнее использовать обученные модели, усредняя веса из нескольких сессий обучения. Это помогает снизить риск переобучения и обеспечивает сохранение лучших характеристик модели, приобретенных в процессе обучения.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro