Операция выполнена!
Закрыть
Хабы: Машинное обучение, Искусственный интеллект, Python, TensorFlow

Привет, Хабр!

Меня зовут Алексей Рудак, я основатель компании Lingvanex, которая разрабатывает решения в области машинного перевода и транскрипции речи. Продолжаю цикл статей о том, как устроен переводчик на нейронных сетях изнутри. И сейчас хочу рассказать про работу функции потерь. Для тренировки модели используется opensource фреймворк OpenNMT-tf.

Статья предоставляет всесторонний обзор вычисления функции потерь в машинном обучении, особенно в контексте моделей последовательностей. Она начинается с подробного описания того, как матрица логитов, генерируемая после преобразований в декодере, обрабатывается через функцию cross_entropy_sequence_loss. Эта функция играет ключевую роль в измерении расхождения между предсказанными выводами и фактическими метками. В статье описаны шаги, включая преобразование логитов в подходящий формат, применение сглаживания меток для создания сглаженных меток и вычисление кросс-энтропийных потерь с использованием softmax. Каждый этап подробно объясняется, чтобы было понятно, как каждый компонент вносит вклад в общую оценку потерь.

Кроме вычисления потерь, статья рассматривает механизм выравнивания, используемый для улучшения работы модели. Описано, как значение потерь корректируется на основе направляемого выравнивания, что позволяет модели лучше учитывать взаимосвязи между исходными и целевыми последовательностями. Также подробно рассматривается процесс вычисления и применения градиентов, иллюстрируя, как оптимизатор обновляет веса модели для минимизации потерь.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro