Операция выполнена!
Закрыть
Хабы: Блог компании Swordfish Security, Искусственный интеллект, Информационная безопасность, Машинное обучение

На практике продакшен-модели чаще всего «падают» из-за трёх вещей: несоответствие с инфраструктурой, дрейфа данных, и ошибочного отката/обновления версии.
Единый гайд по безопасной разработке ML-моделей — от хаотичного до полностью автоматизированного уровня зрелости.

Что внутри:

Как применять Infrastructure-as-Code для ML-кластеров и не оставлять открытые порты;

Зачем даже маленькой команде нужен Feature Store и как избежать training-serving skew;

Где прячутся CVE в ML-библиотеках и как их ловить до релиза;

Канареечный деплой с авто-откатом по метрикам и разумными порогами;

мониторинг дрейфа данных и качества модели в реальном времени;

Чек-лист DevSecOps: от тега в Model Registry до регулярных Model Review.

Материал поможет выстроить MLOps-процесс, устойчивый к атакам и сбоям, не превращая релизы моделей в ночной марафон.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro