Операция выполнена!
Закрыть
Хабы: Искусственный интеллект, Машинное обучение

Этот пост для нашего тг-канала Pro AI написал мой коллега Александр Мигаль, специалист по компьютерной лингвистике и один из авторов RuTaR

Все привыкли к тому, что ChatGPT, DeepSeek, Llama и другие коммерческие LLM способны быстро и умеренно качественно генерировать текст практически любого стиля и содержания. Однако, потенциал использования языковых моделей давно не ограничивается лишь пресловутым копирайтингом и написанием курсовых за одну ночь. Современные модели‑трансформеры всё чаще демонстрируют эмерджентные способности, выражающиеся в их способности к сложному пошаговому рассуждению.

Само устройство этих «рассуждений» (англ. reasoning) забавно перекликается с гипотезой лингвистической относительности Сепира‑Уорфа. Её строгая версия предполагает, что человеческое мышление является формой «внутреннего монолога». Но если наш мозг оказался устроен несколько сложнее, чем думали Сепир и Уорф, то в случае с LLM всё буквально так — модель рассуждает, когда «говорит», т. е. генерирует текст.

На текущий момент мы уперлись в потолок развития LLM привычным путём. Данные для их обучения кончились ещё год назад, а продолжать наращивать и без того огромные вычислительные мощности попросту нет смысла. Поэтому самым перспективным направлением разработок в области ИИ выступает развитие того самого reasoning — умения модели рассуждать.

И хотя за последние полгода появилось множество систем, сделавших большой шаг в сторону продвинутого reasoning (например, DeepSeek R1, о1 от OpenAI), тестируются они всё так же — на математике, шахматных задачках и головоломках. А вот насколько хорошо они справляются с задачами в сфере права или, скажем, комплексного текстуального анализа никто не знает — в большинстве бенчмарков полностью игнорируется способность LLM рассуждать в плоскости гуманитарного знания.

Читать далее
Читайте также
СТАТЬ АВТОРОМ
НОВОСТИ

ПИШИТЕ

Техническая поддержка проекта ВсеТут

info@vsetut.pro