Хабы: Блог компании X5 Tech, Python, Математика, Статистика в IT
Всем привет! Как и во многих других компаниях, в X5 существует огромное количество данных, зависящих от времени. Такие данные принято называть временными рядами (time-series). Это могут быть данные о продажах в магазинах, об остатках на складах или об удовлетворенности клиентов. Используя эти данные, мы хотим искать инсайты и приносить пользу бизнесу.
Бутстрап является ценным инструментом — он позволяет генерировать множество синтетических выборок из исходных данных, на основе которых мы можем оценить распределение интересующей нас статистики и построить доверительные интервалы. Например, если нужно определить доверительный интервал для медианы или какого-то другого квантиля предсказаний, бутстрап позволяет это сделать, даже когда прямое аналитическое вычисление невозможно.
Для временных рядов бывает полезно оценить границы, в которых находятся параметры модели, из которой получен ряд. Кроме того, часто необходимо посчитать доверительный интервал, в котором находятся предсказания для объекта с использованием моделей машинного обучения. Однако обычные методы бутстрапа не подойдут для временных рядов, так как они не учитывают структуру таких данных.
В нашем обзоре мы рассмотрим, как различные модификации метода бутстрапа учитывают структурные особенности и зависимости в данных временных рядов. Особое внимание будет уделено объяснению, почему нельзя применять стандартный подход бутстрапа к временным рядам без учёта их структуры. Затем мы перейдем к обзору методов, которые позволяют эффективно решить эту проблему.
Читать далее